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Abstract. The coevolutionary dynamics in finite populations currently is investigated in a wide range of
disciplines, as chemical catalysis, biological evolution, social and economic systems. The dynamics of those
systems can be formulated within the unifying framework of evolutionary game theory. However it is not
a priori clear which mathematical description is appropriate when populations are not infinitely large.
Whereas the replicator equation approach describes the infinite population size limit by deterministic
differential equations, in finite populations the dynamics is inherently stochastic which can lead to new
effects. Recently, an explicit mean-field description in the form of a Fokker-Planck equation was derived for
frequency-dependent selection in finite populations based on microscopic processes. In asymmetric conflicts
between two populations with a cyclic dominance, a finite-size dependent drift reversal was demonstrated,
depending on the underlying microscopic process of the evolutionary update. Cyclic dynamics appears
widely in biological coevolution, be it within a homogeneous population, or be it between disjunct popula-
tions as female and male. Here explicit analytic address is given and the average drift is calculated for the
frequency-dependent Moran process and for different pairwise comparison processes. It is explicitely shown
that the drift reversal cannot occur if the process relies on payoff differences between pairs of individuals.
Further, also a linear comparison with the average payoff does not lead to a drift towards the internal fixed
point. Hence the nonlinear comparison function of the frequency-dependent Moran process, together with
its usage of nonlocal information via the average payoff, is the essential part of the mechanism.

PACS. 87.23.-n Ecology and evolution – 89.65.-s Social and economic systems

Introduction

Biology offers a rich laboratory of various types of oscilla-
tory, chaotic and stochastic dynamics. Recently cyclic evo-
lutionary dynamics has been observed in E.coli in vitro [1]
and in vivo [2], and attracted interest as a possible mech-
anism to stabilize biodiversity. This contributes to a long-
standing debate how the emergence of new mutants is
maintained in biological evolution: cyclic dynamics has
been one of the first proposals for such mechanisms [3].
Cyclic coevolution is not only observed in asexual repro-
duction. A prominent observation of cyclic domination is
observed in side-blotched lizards [4,5]. Three territorial
mating behaviour strategies of the male lizards occur, and
coincide genetically with orange, blue and yellow blotches.
While the cyclic dynamics of rock-paper-scissors type can
be demonstrated without taking males and females into
account explicitely, hereby an improved quantitative un-
derstanding is possible [6].

Social and economic systems are a likewise interesting
class of systems in which cyclic dynamics is observed. So-
cial individua deciding in economic situations [7–13] can
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fall into oscillatory cycles, e.g. when loners, not partici-
pating in the game, are added as a third strategy to a
Prisoner’s Dilemma [14,15]. Evolutionary game theory is
a unifying approach for such systems [16–18].

In this paper, a paradigmatic cyclic game is analyzed,
which is of likewise importance, for biological mating be-
haviour, as well as in human social decision dynamics:
Dawkins’ “Battle of the Sexes” (BOTS), a 2×2 bima-
trix game, is the simplest possible type of a cyclic game
played by individuals between two homogeneous, mixed
populations [19]. In the mating behaviour of females and
males, a cyclical dominance of ‘slow’ and ‘fast’ strategies
can lead to a “Battle of the Sexes”, or oscillations, in the
infinite population replicator dynamics [19–21]. The in-
herent stochasticity in a finite population [22–24] refines
this picture, depending on population size and underlying
process [25–30].

The aim of the paper is to investigate in detail the
drift reversal firstly reported in [25], and to corrobate the
simulations with an analytic result, allowing for a refined
insight into the drift reversal. The main results are (i)
that for a generic class of pairwise comparison processes a
drift reversal does not occur, and (ii) that for the Moran
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process, the combination of both a nonlinear reproductive
fitness and the comparison with a global function (average
fitness) are necessary for a drift reversal.

The paper is organized as follows. In Section 1, the
BOTS payoff matrices are introduced and the infinite pop-
ulation description of evolutionary game theory by the
replicator equation is recalled. In Section 2, evolutionary
birth-death processes are defined in a unifying framework
for comparison. In Section 3 the influence of the stochas-
ticity on the time evolution of the population densities is
motivated by computer simulations of the process.

In the main Section 4, the average drift (more formally
introduced in Sect. 4.1) of the BOTS dynamics is calcu-
lated explicitely in finite populations, and the population
size corrections are obtained to first and second order an-
alytically for four microscopic interaction processes, for
neutral evolution as well as for two linear processes, the
Local Update and the linearized Moran process. The pa-
per concludes by discussing and summarizing the results.

1 Battle of the Sexes: replicator dynamics

This is the simplest cyclic game between two populations.
Following Dawkins [19], the elementary payoffs read
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for agents interacting with a population of (x, y, 1−x, 1−
y) = (i/N, j/N, (N−i)/N, (N−j)/N) agents in the strate-
gies (π|A , π

~
A , π|B, π

~
B). As the opponent’s payoff matrix is

not the simple transpose of the proponent’s payoff matrix,
such games are called bimatrix games or asymmetric con-
flicts. While in the replicator equations [20] picture the
population cannot go extinct due do lack of discreteness,
for the stochastic description in this paper the population
size will be fixed to N female and N male individuals.

For the relative frequencies, or abundance densities,
evolutionary game theory, with the implicit assumption of
an infinite population, considers the replicator equation

ẋ = x(πA
| − 〈π|〉) (3)

ẏ = y(πA
~ − 〈π~〉). (4)

For the standard parameter choice (equivalent to “Match-
ing Pennies”) of the BOTS the replicator equation has a
constant of motion

H = −x(1 − x)y(1 − y). (5)

The replicator equations exhibits neutrally stable oscilla-
tions around the x = y = 1/2 fixed point; the adjusted
replicator equation (see [20]) has an attractive stable fixed
point. In so-called asymmetric conflicts (bimatrix games)

where members of the two (sub)populations can receive
different payoffs, both populations may gain different av-
erage payoffs, and the denominators in the adjusted repli-
cator equations (being the proper N → ∞ limit of the
Moran process, see [27])

ẋ =
x(πA

| − 〈π|〉)
1−w

w + 〈π|〉
(6)

ẏ =
y(πA

~ − 〈π~〉)
1−w

w + 〈π~〉
(7)

are different, as 〈π|〉 = −〈π~〉. Thus the denominators
cannot be absorbed into a dynamical rescale of time (ve-
locity transformation) and both types of replicator equa-
tions not necessarily exhibit the same stability properties.

How is this behaviour changed, and how far is it pre-
served in finite populations? This is the central question
addressed in this paper.

2 Evolutionary processes

To study dynamics in finite populations, it is advised to
go down to the microscopic interactions, and to derive
macroscopic equations of motion herefrom, eventually uti-
lizing a finite-size expansion to derive fluctuation correc-
tions to the deterministic limit. As the microscopic dy-
namics may depend on the system at hand, the respective
biological or behavioral setup may require different in-
teraction and competition processes. These, however, can
be cast into a unifying framework. Following previous in-
vestigations [7,25], we consider two classes of birth-death
processes: the frequency-dependent Moran process [22–24]
describing competition with the whole population, and lo-
cal two-particle interaction processes, with linear [25] or
Fermi-type [15,31,32] dependence of the reproductive fit-
ness as a function of the payoff difference between two
competing agents. For all processes, the payoffs for an in-
dividual read

π|A = 2y − 1 π
~
A = 1 − 2x

π|B = 1 − 2y π
~
B = 2x − 1. (8)

2.1 Moran process

The Moran process [22], a birth-death process, thus pre-
serving N , is a standard model of mathematical genetics
describing random inheritance in overlapping generations.
In its original formulation, fitnesses of the genetic types
were independent of abundance densities in the popula-
tion, i.e., coevolution was not taken into account. In the
frequency-dependent Moran process [23,24], each individ-
ual competes with the whole population, or an represen-
tative fraction of it, and reproduces proportional to this
(cumulative) payoff normalized by the average payoff in
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the population. With the payoffs averaged over the re-
spective population,
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N − i

N
π|B (9)
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for given (i, j) the transition probabilities of the possible
four hopping events are given by
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For better comparison with the processes below, an addi-
tional factor 1/2 was introduced. For this commonly used
version of the frequency-dependent Moran process one has
to ensure that negative payoffs do not lead to negative
transition probabilities. This inconsistency is avoided by
delimiting w such that the denominator remains positive.

2.2 Local processes

In many cases a competition of a single individual with
the whole population may be unrealistic. Therefore, it is
advised to consider a local competition among individuals.
One process of this type is the Local update process [25],
where one individual b is selected randomly for reproduc-
tion, compares with another randomly chosen individual
a, and changes strategy with probability 1

2 (1+w(πa−πb)).
The frequency-dependent Moran process (MO), and

the other processes below (LU = local update [25], FP =
Fermi process [32], and a linearized Moran process (LM)
considered below) can more conveniently be written by
means of a reproductive function

ΦMO(πa, 〈π〉, w) =
1
2

1 − w + wπa

1 − w + w〈π〉 (11)

ΦLM(πa, 〈π〉, w) =
1
2
(1 + w(πa − 〈π〉)) (12)

ΦLU(πa, πb, w) =
1
2
(1 + w(πa − πb)) (13)

ΦFP(πa, πb, w) =
1

1 + exp(−w(πa − πb))
(14)

so that the hopping probabilities are

T ba = Φ(πa, πb, w)
Na

N

Nb

N
(15)

for the pairwise comparison processes (LU, FP), and

T ba = Φ(πa, 〈π〉, w)
Na

N

Nb

N
(16)
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Fig. 1. Stochastic motion around the fixed point, Moran pro-
cess (w = 0.5) for different population sizes. Shown is a phase
space plot, where x denotes the number of males in strategy A
and y denotes the number of females in strategy A. Due to the
lack of helical paper, only one period of oscillation is shown.
One can observe that for the large population (N = 10 000) the
trajectory spirals inwards towards the fixed point at ( 1

2
, 1

2
).

for the other processes (MO, LM) where an individual’s
payoff is compared to the payoff averaged over the whole
population.

For all processes, Φ considers a two-particle (birth-
death) process where an individual with fitness πa com-
pares (Eqs. (11–12)) with a representative sample of the
population (i.e. the average fitness 〈π〉), or (Eqs. (13–
14)) with another individual πb. The frequency-dependent
Moran process [22,23], the Local Update [25], and the
Fermi process [32] are microscopic evolutionary processes
discussed recently. The Linearized Moran (LM) process
arises as approximation of the Moran (MO) process in
the weak selection limit w → 0.

Note, that elsewhere for the Local update w is replaced
by w/∆πmax, and for the Moran process, w may not ex-
ceed 1 − πmin. In the above notation, in the limit w → 0
the Fermi process approaches the Local update process.

3 Stochastic motion around the fixed point

Having defined different possible microscopic update pro-
cesses, one desires to gain an intuitive understanding of
the resulting stochastic motion, in comparison of small
(here, N = 50) and large (here, N = 10000) populations.
Figure 1 compares the time evolution of the evolutionary
trajectory in phase space (x, y) and Figure 2 in the time
evolution of H . For a large population, the qualitative dy-
namics of the adjusted replicator equation is recovered,
i.e., convergence to the internal fixed point and thereby
decrease of H which serves as Lyapunov function in the
deterministic limit. The motion of the small population is
comparatively more stochastic, and after few generations,
fixation to the border is reached. Intuitively, the “contract-
ing force” of the stable fixed point is to weak to ensure the
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Fig. 2. Stochastic motion around the fixed point, Moran pro-
cess (w = 0.5) for different population sizes (same as in Fig. 1).
Here for the initial trajectory the value of H (Eq. (5)) is shown
as a function of time. Time is measured in generation units,
i.e. N update steps are performed per unit time so that after
t = 1 each agent on average is updated once. For N = 50, H
fluctuates and also increases on average (due to stochastic mo-
tion in the plane). For N = 10 000, H decays as the trajectory
approaches the fixed point. For the corresponding determinis-
tic system, H serves as a Lyapunov function of the stable fixed
point and admits the value Hfix = −1/16 there (straight line).
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Fig. 3. Stochastic motion around the fixed point. Moran pro-
cess (w = 0.5). For small population sizes, the internal fluctu-
ations are large compared to the size of the phase space, hence
fixation to the border is reached quickly. Above an intermediate
range (in which the process behaves similar to neutral stable
fixed point), fixation time diverges as the N → ∞ behaviour
of an asymptotically stable fixed point is recovered.

observation of a metastable state. Figure 3 shows a longer
time interval and four different population sizes.

This paper addresses not only the influence of the pop-
ulation size, but also the influence of the microscopic up-
date process. Figure 4 demonstrates that on longer time
scales (here, the time scale is shown on a logarithmic scale
to show the convergence behaviour). While the Local Up-
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Fig. 4. Stochastic motion around the fixed point. Time evo-
lution over five decades for the Moran process (black) and the
Local update process (red/gray) for a large population size
N = 10 000 (w = 0.5). For such large populations, the stochas-
tic motion is close to the deterministic equations that follow
in the limit N → ∞ [25]. For the Local Update, the replicator
equation is neutrally stable at the fixed point, and H admits a
constant of motion. The stochastic realization shows zero drift
in H , but fluctuates, and ultimately the process leads to fixa-
tion to the border. Also the Moran process will reach the border
for t → ∞, however, after a long metastable transient. For the
Moran process, the deterministic equation is the adjusted repli-
cator equation which has an asymptotically stable fixed point.
Correspondingly H decays describing a transient (metastable)
attractive behaviour towards the fixed point. Note that due to
the attracting force, the motion keeps confined to the vicinity
of the fixed point and fluctuations are damped.

date process performs a specific type of random walk in
H (in the sense that the internal fixed point is of neu-
tral stability), the Moran process first confines the mo-
tion in the vicinity of the attracting internal point, but
due to the discreteness of the process, fixates to the bor-
der in the limit t → ∞. The initial conditions are the same
as in the previous figures, starting from a state different
from the fixed point, to show that the Moran process in-
deed leads to some type of convergence to the metastable
state.

4 Deterministic and stochastic equations
of motion at the level of the diffusion
approximation

In many cases population sizes are such small that devi-
ations from a deterministic population density cannot be
neglected – especially because a species or genetic trait can
go extinct, or likewise, a new mutant can either extinct or
fixate (i.e., become the common trait in the whole pop-
ulation). If populations are not too small, e.g. N = 102,
one however can think of a perturbation expansion in or-
ders of 1/N to derive stochastic corrections to the de-
terministic equations of motion. A classic approach in
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mathematical genetics in this direction is the so-called
diffusion approximation [33,34], which allows to derive
fixation probabilities and densities from a Kolmogorov
forward, or Fokker-Planck, equation. For a fixed popula-
tion size and one trait (higher-dimensional cases are pro-
hibitive), the equivalence to a one-dimensional Markov
chain allows for a closed exact expression.

A similar framework applies for deriving the equations
of motion in zero and first order in 1/N , and neglecting
higher orders; i.e., we operate at the level of the diffusion
approximation. Such approaches have been formulated in
a wide range of fields from genetics to behavioural dy-
namics [7,13,25,27,30,33,35]. In the simplest setting of
two strategies or traits, from the hopping rates T +, T− we
have

ρ̇(x, t) = −∇(a(x)ρ(x, t)) + ∇2(b2(x)ρ(x, t)) (17)

where ∇ = ∂/∂x, a(x) = T + − T− and b2(x) = (T + +
T−)/N have to be derived for each microscopic update
process and payoff matrix.

4.1 Stability and drift reversal

The phase space average discussed in the next section can
be interpreted as an approximation of the time evolution
of an observable H , here, written for the case of two strate-
gies only,

Ḣ � 〈∆H〉ρx :=
∫

dx ρ(x)
[
(H(x + 1/N)−H(x))T +

+ (H(x − 1/N)−H(x))T−]
(18)

and, for an ensemble of arbitrary initial conditions, we ap-
proximate ρ(x) by a constant. (Formally, one should dis-
tinguish between a continuous and a discrete phase space
average; within this paper – apart from constant prefac-
tors – the functions for H and the rates T are continuous
and differentiable.)

In the remainder we focus on functions H which also
are Lyapunov functions of an internal fixed point. Then
a decrease of H can be interpreted as a motion towards
the fixed point, and an increase of H is interpreted as an
escape from the fixed point. Thus we can define (omitting
the subscript x for the phase space average)

〈∆H〉 :=
∫

dx
[
(H(x + 1/N)−H(x))T +

+(H(x − 1/N)−H(x))T−]
(19)

and define “drift reversal” as the change of sign of 〈∆H〉.
If a change of system parameters (N, w, payoffs), leads

to a changing sign of 〈∆H〉, one observes the fixed point
gradually lose its stochastic metastability. Due to this
gradual transition, respective critical population sizes are
approximative and could be defined in (possibly many)
different ways. The essential advantage of assessing the
stability from a sign reversal of this average drift 〈∆H〉 is
that it can be calculated comparatively easy, and in the
case of the Battle of the Sexes, even analytically.

5 Average drift: Battle of the Sexes

For the replicator equation, equation (5) defines a constant
of motion. As we are interested in the finite-size correc-
tions, we can use H as an observable for the distance to
the interior fixed point. For the processes defined above,
the transition probabilities allow to calculate the average
change of the constant of motion within the state space
(1 ≤ i, j ≤ N − 1) as

〈∆H〉 =
1

N2(N − 1)2

N−1∑
i=1

N−1∑
j=1[

i(N − i)j(N − j)(T +• + T−• + T •+ + T •−)

− (i + 1)(N − i − 1)j(N − j)T +•

− (i − 1)(N − i + 1)j(N − j)T−•

− i(N − i)(j + 1)(N − j − 1)T •+

− i(N − i)(j − 1)(N − j + 1)T •−)
]

=
1

N2(N − 1)2

N−1∑
i=1

N−1∑
j=1[

j(N − j)
[
(2i − N)(T +• − T−•) + (T +• + T−•)

]
+ i(N − i)

[
(2j − N)(T •+ − T •−) + (T •+ + T •−)

]]

=
N2

(N − 1)2

N−1∑
i=1

N−1∑
j=1[

y(1 − y)
[2x − 1

N
(T +• − T−•)+

1
N2

(T +• + T−•)
]

+ x(1 − x)
[2y − 1

N
(T •+ − T •−)+

1
N2

(T •+ + T •−)
]]

.

(20)

In the continuum limit the sums are replaced by integrals,

〈∆H〉=
∫ 1

0

dx

∫ 1

0

dy

[
y(1 − y)

[2x − 1
N

(T +• − T−•)+
1

N2
(T +• + T−•)

]

+ x(1 − x)
[2y − 1

N
(T •+ − T •−)+

1
N2

(T •+ + T •−)
]]

=
1
N

∫ 1

0

dx

∫ 1

0

dyx(1 − x)y(1 − y)

× [
(2x − 1)(Φ|A − Φ|B) + (2y − 1)(Φ~A − Φ

~
B)

]
+

1
N2

∫ 1

0

dx

∫ 1

0

dyx(1 − x)y(1 − y)

× [
(Φ|A + Φ|B + Φ

~
A + Φ

~
B)

]
.

(21)
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For given transition probabilities T the drift of the discrete
process can be expressed exactly, and in the case of linear
processes, the resulting integrals are simple polynomial
integrals. From this versatile expression, we can perform
a comparison of the different processes.

5.1 Neutral evolution and Local Update

If w = 0, or if all payoff elements are zero, all terms of
type (T +• − T−•) vanish. Now consider the case where
the payoffs come into play. For the Local Update, one has

Φ
~
A + Φ

~
B = Φ|A + Φ|B = 1 (22)

and

Φ
~
A − Φ

~
B = −2w(2x − 1) (23)

Φ|A − Φ|B = +2w(2y − 1). (24)

Thus the term

(2x − 1)(Φ|A − Φ|B) + (2y − 1)(Φ~A − Φ
~
B)

vanishes identically, i.e. for the average drift for the local
update as well as for neutral evolution only the 1/N2 order
survives,

〈∆H〉LU = 〈∆H〉NE =
2

N2

∫ 1

0

dx

∫ 1

0

dyx(1 − x)y(1 − y)

=
1

18N2
. (25)

The discrete stochastic diffusion in this neutral case
is equivalent to the genetic drift of two independent
types [36,37] and the 1/N term vanishes, as expected.
But it is remarkable that the term in order 1/N does not
contribute for the Local Update process. As this term cor-
responds for N → ∞ to the ordinary replicator equation,
this is fully consistent with H being a constant of motion.
For processes that depend on the payoff difference in a
nonlinear manner, as the Fermi process, H is no longer
a constant of motion. However, the behaviour of 〈∆H〉 is
remarkable, and investigated for finite populations in the
next subsection.

5.2 General nonlinear pairwise comparison processes

Before approaching the nonlinear reproductive fitness de-
fined by the frequency-dependent Moran process, it is
instructive to analyze what happens if one considers a gen-
eral pairwise comparison like for instance the Fermi pro-
cess (14). Let us assume the general case that the differ-
ence between the reproductive functions Φ

~
A − Φ

~
B , which

is antisymmetric upon interchanging the strategies A, B
of the individuals anyhow, merely is a function of the dif-
ference of the payoffs

Φ
~
A − Φ

~
B =: f(π~A − π

~
B), (26)

which is fulfilled for the Local update, the Fermi pro-
cess, and practically all common local comparison pro-
cesses including “Imitate if Better”. Then f is odd, f(x) =
−f(−x). We also assume that this function is identical for
the female and male population – this is justified as those
differences should be cast into the payoff matrix rather
than manipulating the reproductive functions. For conve-
nience, one can here require f to be infinitely differen-
tiable. Then f has only odd Taylor coefficients,

Φ
~
A − Φ

~
B = f(π~A − π

~
B) = f(∆π)

= f
′
∆π +

f
′′′

3!
(∆π)3 +

f (5)

5!
(∆π)5 + . . .

The linear term is that of the Local update, whose cancel-
lation in 〈∆H〉 we have seen before. Upon inspection of,
e.g., the order (2n+1) term, one finds apart from common
factors Hf (2n+1)/(2n + 1)! that the integrand contains

(2x − 1)(2(2y − 1))2n+1 + (2y − 1)(−2(2x − 1))2n+1 =

22n+1(2x − 1)(2y − 1)((2y − 1)2n − (2x − 1)2n).

That is, for every n, the integral in order 1/N splits into
the difference between two integrals which are symmetric
in interchange of x and y, thus identical, and the contri-
butions of each Taylor coefficient cancel. Hence follows

Theorem 1. For a pairwise-type comparison process,
where the difference between reproductive fitnesses ΦA −
ΦB is an infinitely differentiable function of the payoff
difference, the average drift 〈∆H〉 in the Battle of the
Sexes (with the ±1 payoff matrix) is independent of the
strength of selection w and equal to the drift of neutral
evolution (25).

As a corollary, there is no drift reversal for the Local
update as well as for the Fermi process, confirming the
numerical results in [25,29].

The result is remarkable in one sense: Even though
a nonlinear comparison process can lead to a nonlinear
replicator equation – which e.g. takes the form of a tan-
gens hyperbolicus of the payoff difference for the Fermi
process [32] – the average drift remains unaffected even
for strong selection and small populations.

5.3 Linearized Moran process

For the linearized Moran process, one has

Φ
~
A + Φ

~
B = 1 +

w

2
(π~A + π

~
B − 2〈π~〉); (27)

for the male population a corresponding equation holds.
The integrand in the diffusion (order 1/N2) term, apart
from a factor H , is

2 +
w

2
(π~A + π

~
B + π|A + π|B − 2〈π~〉 − 2〈π|〉).
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As the sum of the payoffs A and B is zero for both popu-
lations, and

〈π~〉 = y(1 − 2x) + (1 − y)(2x − 1) = −(2x − 1)(2y − 1)

= −x(2y − 1) + (1 − x)(2y − 1) = −〈π|〉,
again the game does not contribute to the diffusion term,
which is, independently of w, identical to the neutral case.
Now, does the game contribute to the first order? Here,

Φ
~
A − Φ

~
B = −w

2
(π~A − π

~
B) = −w(2x − 1) (28)

Φ|A − Φ|B = +
w

2
(π|A − π|B) = +w(2y − 1) (29)

and thus again the term

(2x − 1)(Φ|A − Φ|B) + (2y − 1)(Φ~A − Φ
~
B)

vanishes, i.e. for the average drift for the local update as
well as for neutral evolution only the 1/N2 order survives,

〈∆H〉LM =
1

18N2
.

5.4 Moran process

For the Moran process, it is possible to proceed even de-
spite the nonlinearities. The Moran payoffs are, e.g. for
males in strategy A,

ΦA
| =

1
2

1 − w + wπA
|

1 − w + w〈π|〉
.

Using πA
| + πB

| = 0, and 〈π~〉 + 〈π|〉 = 0, it follows

ΦA
| + ΦB

| + ΦA
~ + ΦB

~ (30)

=
1
2

(1 − w + wπA
~)(2 − 2w + wπA

| + wπB
| )

(1 − w + w〈π|〉)(1 − w + w〈π~〉)

+
1
2

(1 − w + wπA
|)(2 − 2w + wπA

~ + wπB
~ )

(1 − w + w〈π|〉)(1 − w + w〈π~〉)

=
2(1 − w)2

(1 − w)2 − w2〈π~〉2 .

In the weak selection limit, w → 0, this term approximates
the constant 2. For w → 1, it vanishes asymptotically, but
is negative for 1

2 < w < 1, due to a pole at w = 1
2 . While

for x = 1
2 or y = 1

2 (a cross of lines in the state space) the
average fitness vanishes, in the corners the square of the
average fitness always is 1.
The difference terms in the reproductive functions are

ΦA
| − ΦB

| =
1
2

w(πA
| − πB

| )
1 − w + w〈π|〉 = +

w(2y − 1)
1 − w + w〈π|〉

ΦA
~ − ΦB

~ =
1
2

w(πA
~ − πB

~ )

1 − w + w〈π~〉 = − w(2x − 1)
1 − w + w〈π~〉 .

The 1/N term thus becomes, observing 〈π~〉 = −〈π|〉,

w

N

∫ 1

0

dx

∫ 1

0

dyx(1 − x)y(1 − y)

×
[

(2x − 1)(2y − 1)
1 − w + w〈π|〉 − (2x − 1)(2y − 1)

1 − w − w〈π|〉

]

=
w

N

∫ 1

0

dx

∫ 1

0

dyx(1 − x)y(1 − y)(2x − 1)(2y − 1)

× (1 − w − w〈π|〉) − (1 − w + w〈π|〉)
(1 − w)2 − w2〈π|〉2

=
w

N

∫ 1

0

dx

∫ 1

0

dyx(1 − x)y(1 − y)(2x − 1)(2y − 1)

× −2w〈π|〉
(1 − w)2 − w2〈π|〉2

.

The average drift for the Moran process then reads

〈∆H〉MO =
∫ 1

0

dx

∫ 1

0

dy
x(1 − x)y(1 − y)

(1 − w)2 − w〈π|〉2

×
[

2(1 − w)2

N2
− 2w2〈π|〉(2x − 1)(2y − 1)

N

]

= 2
∫ 1

0

dx

∫ 1

0

dy
x(1 − x)y(1 − y)

(1 − w)2 − w〈π|〉2

× 2(1 − w)2 − Nw2〈π|〉2
N2

=
2

N2

∫ 1

0

dx

∫ 1

0

dyx(1 − x)y(1 − y)

× (1 − w)2 − Nw2〈π|〉2
(1 − w)2 − w2〈π|〉2 .

For weak selection w � 1
2 , and N 	 1, one can approxi-

mate the last fraction, yielding

〈∆H〉MO � 2
N2

∫ 1

0

dx

∫ 1

0

dyx(1 − x)y(1 − y)

× [1 − Nw2(2x − 1)2(2y − 1)2)].

Weak selection limit of the drift for the Moran process

Despite reproductive success is based on a comparison
with the average payoff (instead of a pairwise compari-
son), for the linearized Moran process investigated in Sec-
tion 5.3, the drift reversal is lost. Thus, performing the
weak selection limit at the level of the microscopic inter-
action does not properly conserve the properties of the
average drift of the frequency-dependent Moran process.
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But from the exact theory for the Moran case, one can
consider the approximation w → 0 at a later stage:

〈∆H〉MO � − 1
N

∫ 1

0

dx

∫ 1

0

dy 2w2x(1 − x)y(1 − y)

× (2x − 1)2(2y − 1)2

+
2

N2

∫ 1

0

dx

∫ 1

0

dyx(1 − x)y(1 − y)

= − 2w2

900N
+

1
18N2

. (31)

Both terms cancel for a w that matches

Nc = 25/w2. (32)

One should bear in mind that due to the approximation
w � 1/2 made above, equations (31) and (32) rely on
the weak selection limit, which is the biologically most
relevant case.

An interesting viewpoint on its own is to consider w
as a “bifurcation” parameter. Conversely to a Hopf bi-
furcation, where an oscillation amplitude grows with the
square root of a bifurcation parameter, here the effect of
the Moran dynamics, to stabilize the finiteness-stochastic
oscillations around the fixed point, grows quadratically
with the strength of selection w. Thus, for the frequency-
dependent Moran process in finite populations, the onset
of the fixed-point stabilizing mechanism is a quadratic ef-
fect of weak, but increasing, selection.

6 Discussion

The investigation of the different update mechanisms sug-
gests the existence of two universality classes: one, for
which the internal fixed point is neutrally stable (in the
N → ∞ limit), and a second, for which the internal fixed
point is asymptotically stable (in the N → ∞ limit).

The Local update process as well as other (differen-
tiable and pair-symmetric) pairwise comparison processes,
as the Fermi process, and also a linearized Moran process,
belong to the first class. The Moran process belongs to
the second class, and one may assume that more update
processes (combining average fitness and a nonlinearity)
could be constructed for this class; the necessary condition
is that the internal fixed point is attractive in the N → ∞
limit.

In this sense, the properties that were known for the
deterministic replicator equations were recovered, and for
the Moran process class the transition between the insta-
ble and (meta-) stable regime can be described by calcu-
lating the drift reversal from 〈∆H〉. This approach may be
advantageous in high-dimensional cases, where exact sim-
ulations of the process become costly; a phase space aver-
age of 〈∆H〉 is obtained much easier, and in very high di-
mensional spaces one may approximate by a Monte Carlo
integration.

7 Conclusions

Cyclic coevolution in biological or social dynamics is an
interesting class of coevolutionary dynamics and allows in
an examplaric way to study stability, drift and diffusion
in finite populations. Population sizes in markets, decision
processes, as well as in biological populations from bacte-
ria to ants and to vertebrates can vary by many orders
of magnitude, thus the influence of the population size by
the stochasticity in finite populations is of fundamental
relevance in all those disciplines.

For the simplest generic model of a cyclic coevolution
in an asymmetric conflict game between two populations,
the “Battle of the Sexes”, analytical results for the av-
erage drift could be obtained that support the consistent
understanding how the different fixed point stability of or-
dinary and adjusted replicator equations translate to finite
populations.

Partially the results are quite unexpected: not only for
the Fermi process, but also for a quite general class of
pairwise comparison processes – even when they lead to
different replicator equations – the average drift is identi-
cal to the neutral case, and equals 1/(18N2). The second
surprise is that, for the average drift, the linearized Moran
process also falls into the equivalence class of the neutral
evolution.

But how does the drift reversal seen numerically (and
known in the N → ∞ limit for the adjusted replicator
equation) then have to be explained? Here one has to
calculate the average drift for the Moran case, using the
nonlinear dependence on the average payoff to observe the
drift reversal. The hereby obtained average drift then can
be analyzed for weak selection, resulting in an estimate
of the critical population size which delimits the stability
regimes of ordinary and adjusted replicator equations.

More generally speaking, one can conclude that, to sta-
bilize the coexistence of strategies in a large – but finite –
population, not only the global knowledge of the overall
success of the population – the average payoff – must be
taken into account, but in addition it has to determine
the reproductive fitness in a nonlinear manner. The (on
process level) linearized Moran process, as well as neutral
evolution or pairwise comparison, leads to quicker extinc-
tion of all but one of the four strategy pairs.
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